Error bounds for polynomial product approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Bounds for Polynomial Spline Interpolation

New upper and lower bounds for the L2 and Vo norms of derivatives of the error in polynomial spline interpolation are derived. These results improve corresponding results of Ahlberg, Nilson, and Walsh, cf. [1], and Schultz and Varga, cf. [5].

متن کامل

Error Bounds for Minimal EnergyBivariate Polynomial

We derive error bounds for bivariate spline interpolants which are calculated by minimizing certain natural energy norms. x1. Introduction Suppose we are given values ff(v)g v2V of an unknown function f at a set V of scattered points in IR 2. To approximate f, we choose a linear space S of polynomial splines of degree d deened on a triangulation 4 with vertices at the points of V. be the set of...

متن کامل

Total variation error bounds for geometric approximation

We develop a new formulation of Stein’s method to obtain computable upper bounds on the total variation distance between the geometric distribution and a distribution of interest. Our framework reduces the problem to the construction of a coupling between the original distribution and the “discrete equilibrium” distribution from renewal theory. We illustrate the approach in four nontrivial exam...

متن کامل

Error Bounds for Approximation with Neural Networks

In this paper we prove convergence rates for the problem of approximating functions f by neural networks and similar constructions. We show that the rates are the better the smoother the activation functions are, provided that f satisses an integral representation. We give error bounds not only in Hilbert spaces but in general Sobolev spaces W m;r ((). Finally, we apply our results to a class o...

متن کامل

Error bounds for approximation in Chebyshev points

This paper improves error bounds for Gauss, Clenshaw-Curtis and Fejér’s first quadrature by using new error estimates for polynomial interpolation in Chebyshev points. We also derive convergence rates of Chebyshev interpolation polynomials of the first and second kind for numerical evaluation of highly oscillatory integrals. Preliminary numerical results show that the improved error bounds are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1981

ISSN: 0021-9045

DOI: 10.1016/0021-9045(81)90027-7